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Goals:
@ Time-domain Maxwell’s equations

@ Frequency-domain Maxwell’'s equations
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Notation: Div, Curl, Grad

Divergence (Div) of a vector:

8u1 3u2 i 8u3

v.uzaxle@xQ 83[;3

Rotation (Curl) of a vector:

8U3 8uQ 8u1 8U3 8u2 8u1)

Vixu= (8952 Oy’ Oxs  Oxy Ory  Ono

It is important to note that

V- (Vxu)=0.
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Maxwell’s Equations

The Maxwell’s equations are Faraday’s law and Ampere’s law for
electromagnetics:

oH OE
VXE——Mw, VXH—J‘FEE (1)
together with Gauss’s laws for electric and magnetic fields
V- (uH) =0, V- (eE)=p. (2)

Here E is the electric field, H the magnetic field, J the current
density, and p the charge density. Furthermore, i and e are the
permeability and permittivity, respectivily.

The charge density p is related to the current density J through
the continuity equation:

ap B
E—FV-J—O. (3)
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Derivation of Gauss’s Laws

Taking the divergence of (1) yields
0H OF
Combining (3) and (4), we obtain

%(V.MH):(), 2(V.eE):@. (5)

This equation implies that
V-uH =0, V.-eE = p. (6)

Hence, the Gauss’s laws (2) can be derived from (1) and (3).
As a result, many numerical methods are developed to solve the
Maxwell’s equations (1) without the divergence constraints (2).
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Maxwell’s Equations in Time Domain

We will describe HDG methods for solving the following PDE
system:

OH .
— E =0 n
M@t + V x , in €,

OFE

—GE—FVXH = J, inQ,

together with boundary conditions

nx b = gg, OnFE,

nxH = am, on FH,

and initial conditions
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Approximation Spaces

We introduce the following spaces

Vit ={v e [LX(To)]? : vlk € [Pu(K)]",VK € Tp},
M = {nc[L*(&)] : nlp € [Pe(F)]%n-n=0VF c&,}.

Note that M} consists of vector-valued functions whose normal
component is zero on any face. Hence, a member of M} can be
characterized by two tangential vectors on the faces: if ¢{" and
tI’ denote independent tangent vectors on F, we can write the
restriction of n € M} on F as

nlr =o'ty +axty, (10)

where both of” and o are polynomials of degree at most & on
F.
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Computing the Tangential Vectors

Given a unit normal vector n = (nq, ns, n3), without loss of
generality, we assume that

[na| > [nal, [na| > |ns|. (11)
Then the two tangential vectors can be computed as
tl = (_n2/n17170)7 t2 = (_n3/n17071)' (12)

Note that the two tangential vectors would be the same if we set
n = _(nla na, 77’3)'
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HDG for Maxwell’s Equations in Time Domain

We seek (H,, E,, E;) € VF x V;¥ x M} such that

(MwaC)Th + (Eh7 v X C)Th + <Ehac X n> - Oa

T
—(eEy, w7, + (Hp, V X w)7, + <f{\h,'w X n>8T = (J,w)7,

h

Hom) i nxBgn)
<n hs M 871\89+ n he9em)
+<nXﬁh_gH7n> :Oa

Iy

(13)
for all (¢, w,n) € V}F x V¥ x MF, where

f‘I\h:Hh—f—T(Eh—./E\'h)XTL. (14)

Here 7 is the stabilization function.
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Maxwell’s Equations in Frequency Domain

Assume that the electromagnetic field is time-periodic with
frequency w. Then we have

E(t) = Real[E(w)e™!], H(t) = Real[H (w)e™"], (15)

where E(w) and H (w) are the solution of the following PDE
system:
iwwH +V x E = 0, in €,
(16)
—iewE+V xH = J, inqQ,

together with boundary conditions

nxE = gg, onl'g,
E E (17)
nxH = gy, onl'y.
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Approximation Spaces

We introduce the following spaces

Vi ={v e [LX(Tw)]" : vlx € [Ch(K)]".VK € Ta},

M = {n € [L*(&))? : mlr € [Ce(F))),n-n=0,YF € &},
(18)

where Ci(K) is the space of complex polynomials of degree at
most k& on K. Hence, a function v € C(K) can be written as

U = UReal T “}Imag (1 9)

where vgea € Pr(K) and vima, € Pi(K) are the real part and
imaginary part, respectively.
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HDG for Maxwell’s Egns in Frequency Domain

We seek (H,, E,, E;) € VF x V;¥ x M} such that

(ipwH, O + (Bn ¥ x Oy + (Bn ¢ xm) =0,
h

—(iewEp, w), + (Hp, V x w)7, + <Hh,'w X n>aT (J,w)7,
h

wxHun) o+ (n o
< h”?aTh\m‘F h—9gg,N

.
+ <n X f-I\h — gH,n>FH
for all (¢, w,n) € V}F x V¥ x MF, where

H, = H),+7(E, — Ey) x n. (21)
Here 7 is the stabilization function.
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