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Notation: Div, Curl, Grad
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Gradient (Grad) of a vector:
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Notation: Stress tensors

Total stress tensor:

σ = −pI + τ

where p is the pressure and τ is the viscous stress tensor.

For linear isotropic (Newtonian) medium, τ is given by

τ = λ(∇ · u)I + ν(∇u+∇uT ).

where λ is the bulk viscosity and ν is the dynamic viscosity.

For incompressible flow ∇ · u = 0, the stress tensor is

τ = ν(∇u+∇uT ).
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Stokes Equations: Stress Formulation

The Stokes equations are

−∇ · σ = s, in Ω,

∇ · u = 0, in Ω.
(1)

Here s is a forcing term.

Since ∇ · u = 0, we obtain

τ − ν(∇u+∇uT ) = 0, in Ω,

∇ · (pI − τ ) = s, in Ω,

∇ · u = 0, in Ω.

(2)

This is the stress formulation of the Stokes flow.
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Stokes Equations: Gradient Formulation

Furthermore, we note that

∇ · (ν(∇u+∇uT )) = ∇ · (ν∇u) +∇ν(∇ · u) = ∇ · (ν∇u) (3)

We thus have

L−∇u = 0, in Ω,

∇ · (pI − νL) = s, in Ω,

∇ · u = 0, in Ω.

(4)

This is the gradient formulation of the Stokes flow.
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Stokes Equations: Boundary Condition

For simplicity we consider the boundary condition:

u = g, on ∂Ω. (5)

To ensure wellposedness of the problem, we impose the
average pressure condition:∫

Ω

p = 0. (6)

In addition, the boundary data g must satisfy a compatibility
condition: ∫

∂Ω

g · n = 0. (7)
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Approximation Spaces

We introduce the following spaces

W k
h = {w ∈ L2(Th) : w|K ∈ Pk(K),∀K ∈ Th},

V k
h = {v ∈ [L2(Th)]d : v|K ∈ [Pk(K)]d,∀K ∈ Th},

Qk
h = {E ∈ [L2(Th)]d×d : E|K ∈ [Pk(K)]d×d,∀K ∈ Th},

M k
h = {µ ∈ [L2(Eh)]d : µ|F ∈ [Pk(F )]d, ∀F ∈ Eh}.
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Inner Products

We define the volume inner products as

(w, v)Th =
∑
K∈Th

(w, v)K , (w,v)Th =
∑
K∈Th

d∑
i=1

(wi, vi)K , (8)

(W ,V )Th =
∑
K∈Th

d∑
i=1

d∑
j=1

(Wij, Vij)K , (9)

and the boundary inner product as

〈w, v〉∂Th =
∑
K∈Th

〈w, v〉∂K , 〈w,v〉∂Th =
∑
K∈Th

d∑
i=1

〈wi, vi〉∂K ,

(10)
where

(w, v)K =

∫
K

wv, 〈w, v〉∂K =

∫
∂K

wv. (11)
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HDG Method

We seek (Lh,uh, ph, ûh) ∈ Qk
h × V k

h ×W k
h ×M k

h such that

(Lh,E)Th + (uh,∇ ·E)Th − 〈ûh,E · n〉∂Th = 0,

(νLh − phI,∇w)Th +
〈

(−νL̂h + p̂hI)n,w
〉
∂Th

= (s,w)Th ,

−(uh,∇q)Th + 〈ûh · n, q〉∂Th = 0,〈
(−νL̂h + p̂hI)n,µ

〉
∂Th\∂Ω

+ 〈ûh − g,µ〉∂Ω = 0,

(ph, 1)Th = 0,

(12)

for all (E,w, q,µ) ∈ Qk
h × V k

h ×W k
h ×M k

h , where

(−νL̂h + p̂hI)n = (−νLh + phI) · n+ S(uh − ûh). (13)

Here S is the stabilization tensor.
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Ill-posedness of the Local Problem

Let us consider the local problem for the HDG method: Find
(Lh,uh, ph) ∈ Qk

h × V k
h ×W k

h such that

(Lh,E)K + (uh,∇ ·E)K − 〈ûh,E · n〉∂K = 0,

−(∇ · (νLh − phI),w)K + 〈S(uh − ûh),w〉∂K = (s,w)K ,

−(uh,∇q)K + 〈ûh · n, q〉∂K = 0.

(14)

Note that if ph is a solution, then ph + C is also a solution of the
problem. This implies that the local problem is ill-posed. Hence,
it is not solvable at the element level.

There are two different approaches to address this issue.
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Mean of The Pressure: The Local Problem

In the first approach, we introduce %̄h ∈ W 0
h and redefine the

local problem as: Find (Lh,uh, ph) ∈ Qk
h × V k

h ×W k
h such that

(Lh,E)K + (uh,∇ ·E)K − 〈ûh,E · n〉∂K = 0,

−(∇ · (νLh − phI),w)K + 〈S(uh − ûh),w〉∂K = (s,w)K ,

−(uh,∇q)K + 〈ûh · n, q〉∂K = 0,

1

|K|

∫
K

ph − %̄h|K = 0,

(15)

for all (E,w, q) ∈ [Pk(K)]d×d × [Pk(K)]d × Pk(K).

The new unknown %̄h is the mean of the approximate pressure.
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Mean of The Pressure: The Global Problem

Find (ûh, %̄h) ∈M k
h ×W 0

h such that

〈(−νLh + phI)n+ S(uh − ûh),µ〉∂Th\∂Ω + 〈ûh − g,µ〉∂Ω = 0,

〈ûh · n, η〉∂Th = 0,

(%h, 1)Th = 0,

(16)

for all (µ, η) ∈M k
h ×W 0

h .
The associated global matrix system is given by[

A B
BT 0

] [
û
p̄

]
=

[
F
0

]
(17)

where (û, p̄) represents the vectors of DOFs of (ûh, %̄h).
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Augmented Lagrangian: The Local Problem

In this approach, we introduce an artificial time derivative to the
local problem as: Find (Lh,uh, ph) ∈ Qk

h × V k
h ×W k

h such that

(Lh,E)K + (uh,∇ ·E)K − 〈ûh,E · n〉∂K = 0,

−(∇ · (νLh − phI),w)K + 〈S(uh − ûh),w〉∂K = (s,w)K ,(∂ph
∂t

, q
)
K
− (uh,∇q)K + 〈ûh · n, q〉∂K = 0

(18)

for all (E,w, q) ∈ [Pk(K)]d×d × [Pk(K)]d × Pk(K) and t ∈ (0,∞).

We then integrate the above system in time using the BE
scheme to obtain the steady-state solution.
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Augmented Lagrangian: The Local Problem

We find (Lnh,u
n
h, p

n
h) ∈ Qk

h × V k
h ×W k

h such that

(Lnh,E)K + (unh,∇ ·E)K − 〈ûnh,E · n〉∂K = 0,

−(∇ · (νLnh − pnhI),w)K + 〈S(unh − ûnh),w〉∂K = (s,w)K ,( pnh
∆t
, q
)
K
− (unh,∇q)K + 〈ûnh · n, q〉∂K =

(pn−1
h

∆t
, q
)
K

(19)

for all (E,w, q) ∈ [Pk(K)]d×d × [Pk(K)]d × Pk(K).

We then integrate the above system in time using the BE
scheme to obtain the steady-state solution.
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Augmented Lagrangian: The Global Problem

Find ûnh such that

〈(−νLnh + pnhI)n+ S(unh − ûnh),µ〉∂Th\∂Ω + 〈ûnh − g,µ〉∂Ω = 0,
(20)

for all µ ∈M k
h .

Applying static condensation we obtain

Aûn = Fn (21)

where ûn represents the vectors of DOFs of ûnh.

Time marching the local-global system until

‖ûnh − ûn−1
h ‖Th

‖ûnh‖Th
≤ TOL . (22)
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Summary

The mean of the pressure approach yields a global system
typical of the saddle-point problems.

The Augmented Lagrangian approach yields a global
system without the mean of the pressure. However, it
requires a number of iterations (typically small) to converge.

It is possible to obtain a new approximate velocity u?h which
is divergence-free and H(div)-conforming. Moreover, u?h
converges with order k + 2 for smooth problems. However,
the local post processing is rather complicated.
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Incompressible Navier-Stokes Equations

We consider the incompressible NS equations

−ν∆u+∇p+∇ · (u⊗ u) = s, in Ω,

∇ · u = 0, in Ω,
(23)

with boundary conditions

u = gD, on ∂ΩD,

Bn = gN , on ∂ΩN ,
(24)

Here the operator B is linear and depends on (L,u, p).

We rewrite the incompressible NS equations as

L−∇u = 0, in Ω

−∇ · (νL− pI− u⊗ u) = s, in Ω,

∇ · u = 0, in Ω.

(25)
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Incompressible NS Equations: HDG Method

We seek (Lh,uh, ph, ûh) ∈Qk
h × Vk

h ×Wk
h ×Mk

h such that

(Lh,E)Th + (uh,∇ ·E)Th − 〈ûh,E · n〉∂Th = 0,

(νLh − phI − uh ⊗ uh,∇w)Th +
〈
ĥh,w

〉
∂Th

= (s,w)Th ,

−(uh,∇q)Th + 〈ûh · n, q〉∂Th = 0,〈
ĥh,µ

〉
∂Th\∂Ω

+ 〈ûh − gD,µ〉∂ΩD
+
〈
b̂h,µ

〉
∂ΩN

= 0,

(26)

for all (E,w, q,µ) ∈Qk
h × Vk

h ×Wk
h ×Mk

h, where

ĥh = (−νLh + phI + ûh ⊗ ûh) · n+ S(uh − ûh). (27)

Here S is the stabilization tensor.

N. C. Nguyen & J. Peraire (MIT) Summer School DG Methods - Barcelona July 12, 2017 19 / 29



Incompressible NS Equations: Stabilization
Tensor

The stabilization tensor S can be defined as

S = τI. (28)

Here the parameter τ should be chosen such that

τ ≥ |u · n|+ ν

`
. (29)
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Incompressible NS Equations: Boundary
Conditions

Condition Type B b̂h
stress −ν(L+LT ) + pI (−ν(Lh +LTh ) + phI)n+ S(uh − ûh)

viscous stress∗ −ν(L+LT ) −ν(Lh +LTh )n+ S(uh − ûh)

vorticity+pressure −ν(L−LT ) + pI (−ν(Lh −LTh ) + phI)n+ S(uh − ûh)

vorticity∗,† −ν(L−LT ) −ν(Lh −LTh )n+ S(uh − ûh)

gradient+pressure −νL+ pI (−νLh + phI)n+ S(uh − ûh)

gradient∗ −νL −νLh · n+ S(uh − ûh)

Table: Neumman boundary conditions for incompressible flow. Note
that the asterisk symbol ∗ indicates that (ph, 1)Ω = 0 is needed. The
dagger symbol † indicates that a Dirichlet boundary condition for the
normal component of the velocity is needed on ∂ΩN .
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Incompressible NS Equations: Implementation
Steps

Use the Raphson-Newton to obtain the linearized problem

Apply either the mean of the pressure approach or the
Augmented Lagrangian approach to the linearized problem

Solve the linear system

Update the solution

Repeat the process until convergence.
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Local Postprocessing

Find u?h ∈ [Pk+1(K)]d such that

〈(u?h − ûh) · n, µ〉F = 0, ∀ µ ∈ Pk(F ),∀F ∈ K,

〈(n×∇)(u?h · n)

−n× ( {{LTh}}n), (n×∇)µ〉F = 0, ∀µ ∈ Pk+1(F )⊥,∀F ∈ K,

(u?h − uh,∇w)K = 0, ∀ w ∈ Pk(K),

(∇× u?h − L21h + L12h, w)K = 0, ∀ w ∈ Pk−1(K),

where

Pk(F )⊥ := {w ∈ Pk(F ) : 〈w, ζ〉F = 0, ∀ ζ ∈ Pk−1(F )}.

Note that u?h is incompressible and H(div)-conforming.
Moreover, u?h converges with order k + 2 for smooth problems.
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Incompressible NS Equations: Kovasznay
Example

We consider the incompressible Navier-Stokes flow in
Ω = (−0.5, 1.5)× (0, 2) with the exact solution:

u1 = 1− exp(λx1) cos(2πx2),

u2 =
λ

2π
exp(λx1) sin(2πx2),

p =
1

2
exp(2λx1),

where λ = Re
2
−
√

Re2

4
+ 4π2 and Re = 1

ν
= 10 is the Reynolds

number.
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Incompressible NS Equations: Kovasznay
Example

HDG Taylor-Hood FEM
‖p− ph‖Th

‖u− u?
h‖Th

‖u− uh‖Th
‖p− ph‖Th

k 1/h error order error order error order error order
4 1.48e-1 −− 1.38e-1 −− 1.31e-1 −− 8.71e-2 −−
8 9.02e-3 4.03 8.28e-3 4.05 1.34e-2 3.29 1.47e-2 2.56

2 16 9.32e-4 3.27 5.47e-4 3.92 1.52e-3 3.15 2.83e-3 2.38
32 1.12e-4 3.06 3.75e-5 3.87 1.82e-4 3.06 6.56e-4 2.11
64 1.38e-5 3.02 2.46e-6 3.93 2.25e-5 3.02 1.62e-4 2.02
4 1.57e-2 −− 1.42e-2 −− 1.62e-2 −− 2.13e-2 −−
8 7.93e-4 4.31 5.68e-4 4.64 1.20e-3 3.76 1.30e-3 4.03

3 16 5.01e-5 3.98 1.89e-5 4.91 7.78e-5 3.94 1.30e-4 3.32
32 3.18e-6 3.98 6.37e-7 4.89 5.00e-6 3.96 1.54e-5 3.08
64 2.00e-7 3.99 2.07e-8 4.94 3.15e-7 3.99 1.89e-6 3.02

Table: Comparison of the convergence of the L2 errors in the pressure
and velocity between the HDG method and the continuous
Taylor-Hood FE method .
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Incompressible NS Equations: Cylinder Flow
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Figure: Finite element mesh.
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Incompressible NS Equations: Cylinder Flow

Use k = 4 for spatial discretization and the DIRK(3,3) scheme
with ∆t = 0.2 for temporal discretization.

Figure: Horizontal velocity and vorticity at t = 100 for incompressible
viscous flow past a circular cylinder at Re = 200.
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Incompressible NS Equations: Cylinder Flow

The results agree well with previous calculations in the literature
as well as with experimental measurements.
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Figure: Time history of lift and drag coefficients for incompressible
flow past a circular cylinder at Re = 200. The Strouhal number is 0.2.
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