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Outline

Goals:

Time-domain Maxwell’s equations

Frequency-domain Maxwell’s equations

N. C. Nguyen & J. Peraire (MIT) Summer School DG Methods - Barcelona July 12, 2017 2 / 13



Notation: Div, Curl, Grad

Divergence (Div) of a vector:

∇ · u =
∂u1

∂x1

+
∂u2

∂x2

+
∂u3

∂x3

Rotation (Curl) of a vector:

∇× u =
(∂u3

∂x2

− ∂u2

∂x3

,
∂u1

∂x3

− ∂u3

∂x1

,
∂u2

∂x1

− ∂u1

∂x2

)
It is important to note that

∇ · (∇× u) = 0.
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Maxwell’s Equations

The Maxwell’s equations are Faraday’s law and Ampere’s law for
electromagnetics:

∇×E = −µ∂H
∂t

, ∇×H = J + ε
∂E

∂t
(1)

together with Gauss’s laws for electric and magnetic fields

∇ · (µH) = 0, ∇ · (εE) = ρ. (2)

Here E is the electric field, H the magnetic field, J the current
density, and ρ the charge density. Furthermore, µ and ε are the
permeability and permittivity, respectivily.

The charge density ρ is related to the current density J through
the continuity equation:

∂ρ

∂t
+∇ · J = 0. (3)
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Derivation of Gauss’s Laws

Taking the divergence of (1) yields

0 = −∇ ·
(
µ
∂H

∂t

)
, 0 = ∇ · J +∇ ·

(
ε
∂E

∂t

)
(4)

Combining (3) and (4), we obtain

∂

∂t
(∇ · µH) = 0,

∂

∂t
(∇ · εE) =

∂ρ

∂t
. (5)

This equation implies that

∇ · µH = 0, ∇ · εE = ρ. (6)

Hence, the Gauss’s laws (2) can be derived from (1) and (3).
As a result, many numerical methods are developed to solve the
Maxwell’s equations (1) without the divergence constraints (2).
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Maxwell’s Equations in Time Domain

We will describe HDG methods for solving the following PDE
system:

µ
∂H

∂t
+∇×E = 0, in Ω,

−ε∂E
∂t

+∇×H = J , in Ω,

(7)

together with boundary conditions

n×E = gE, on ΓE,

n×H = gH , on ΓH ,
(8)

and initial conditions

E(t = 0) = E0, H(t = 0) = H0. (9)
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Approximation Spaces

We introduce the following spaces

V k
h = {v ∈ [L2(Th)]d : v|K ∈ [Pk(K)]d,∀K ∈ Th},

M k
h = {η ∈ [L2(Eh)]d : η|F ∈ [Pk(F )]d,η · n = 0,∀F ∈ Eh}.

Note that M k
h consists of vector-valued functions whose normal

component is zero on any face. Hence, a member of M k
h can be

characterized by two tangential vectors on the faces: if tF1 and
tF2 denote independent tangent vectors on F , we can write the
restriction of η ∈M k

h on F as

η|F = αF
1 t

F
1 + αF

2 t
F
2 , (10)

where both αF
1 and αF

2 are polynomials of degree at most k on
F .

N. C. Nguyen & J. Peraire (MIT) Summer School DG Methods - Barcelona July 12, 2017 7 / 13



Computing the Tangential Vectors

Given a unit normal vector n = (n1, n2, n3), without loss of
generality, we assume that

|n1| ≥ |n2|, |n1| ≥ |n3|. (11)

Then the two tangential vectors can be computed as

t1 = (−n2/n1, 1, 0), t2 = (−n3/n1, 0, 1). (12)

Note that the two tangential vectors would be the same if we set
n = −(n1, n2, n3).
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HDG for Maxwell’s Equations in Time Domain

We seek (Hh,Eh, Êh) ∈ V k
h × V k

h ×M k
h such that

(µḢh, ζ)Th + (Eh,∇× ζ)Th +
〈
Êh, ζ × n

〉
∂Th

= 0,

−(εĖh,w)Th + (Hh,∇×w)Th +
〈
Ĥh,w × n

〉
∂Th

= (J ,w)Th ,〈
n× Ĥh,η

〉
∂Th\∂Ω

+
〈
n× Êh − gE,η

〉
ΓE

+
〈
n× Ĥh − gH ,η

〉
ΓH

= 0,

(13)

for all (ζ,w,η) ∈ V k
h × V k

h ×M k
h , where

Ĥh = Hh + τ(Eh − Êh)× n. (14)

Here τ is the stabilization function.
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Maxwell’s Equations in Frequency Domain

Assume that the electromagnetic field is time-periodic with
frequency ω. Then we have

E(t) = Real[E(ω)eiωt], H(t) = Real[H(ω)eiωt], (15)

where E(ω) and H(ω) are the solution of the following PDE
system:

iµωH +∇×E = 0, in Ω,

−iεωE +∇×H = J , in Ω,
(16)

together with boundary conditions

n×E = gE, on ΓE,

n×H = gH , on ΓH .
(17)
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Approximation Spaces

We introduce the following spaces

V k
h = {v ∈ [L2(Th)]d : v|K ∈ [Ck(K)]d,∀K ∈ Th},

M k
h = {η ∈ [L2(Eh)]d : η|F ∈ [Ck(F )]d,η · n = 0, ∀F ∈ Eh}.

(18)

where Ck(K) is the space of complex polynomials of degree at
most k on K. Hence, a function v ∈ Ck(K) can be written as

v = vReal + ivImag (19)

where vReal ∈ Pk(K) and vImag ∈ Pk(K) are the real part and
imaginary part, respectively.
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HDG for Maxwell’s Eqns in Frequency Domain

We seek (Hh,Eh, Êh) ∈ V k
h × V k

h ×M k
h such that

(iµωHh, ζ)Th + (Eh,∇× ζ)Th +
〈
Êh, ζ × n

〉
∂Th

= 0,

−(iεωEh,w)Th + (Hh,∇×w)Th +
〈
Ĥh,w × n

〉
∂Th

= (J ,w)Th ,〈
n× Ĥh,η

〉
∂Th\∂Ω

+
〈
n× Êh − gE,η

〉
ΓE

+
〈
n× Ĥh − gH ,η

〉
ΓH

= 0,

(20)

for all (ζ,w,η) ∈ V k
h × V k

h ×M k
h , where

Ĥh = Hh + τ(Eh − Êh)× n. (21)

Here τ is the stabilization function.
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